The main interface to PythonQt is the PythonQt singleton. PythonQt needs to be initialized via PythonQt::init() once. Afterwards you communicate with the singleton via PythonQt::self(). PythonQt offers a complete Qt binding, which needs to be enabled via PythonQt_QtAll::init().
The following table shows the mapping between Python and Qt objects:
Qt/C++ | Python |
---|---|
bool | bool |
double | float |
float | float |
char/uchar,int/uint,short,ushort,QChar | integer |
long | integer |
ulong,longlong,ulonglong | long |
QString | unicode string |
QByteArray | QByteArray wrapper |
char* | str |
QStringList | tuple of unicode strings |
QVariantList | tuple of objects |
QVariantMap | dict of objects |
QVariant | depends on type, see below |
QSize, QRect and all other standard Qt QVariants | variant wrapper that supports complete API of the respective Qt classes |
OwnRegisteredMetaType | C++ wrapper, optionally with additional information/wrapping provided by registerCPPClass() |
QList<AnyObject*> | converts to a list of CPP wrappers |
QVector<AnyObject*> | converts to a list of CPP wrappers |
EnumType | Enum wrapper derived from python integer |
QObject (and derived classes) | QObject wrapper |
C++ object | CPP wrapper, either wrapped via PythonQtCppWrapperFactory or just decorated with decorators |
PyObject | PyObject |
PyObject is passed as direct pointer, which allows to pass/return any Python object directly to/from a Qt slot that uses PyObject* as its argument/return value. QVariants are mapped recursively as given above, e.g. a dictionary can contain lists of dictionaries of doubles. All Qt QVariant types are implemented, PythonQt supports the complete Qt API for these object.
All classes derived from QObject are automatically wrapped with a python wrapper class when they become visible to the Python interpreter. This can happen via
It is important that you call PythonQt::registerClass() for any QObject derived class that may become visible to Python, except when you add it via PythonQt::addObject(). This will register the complete parent hierachy of the registered class, so that when you register e.g. a QPushButton, QWidget will be registered as well (and all intermediate parents).
From Python, you can talk to the returned QObjects in a natural way by calling their slots and receiving the return values. You can also read/write all properties of the objects as if they where normal python properties.
In addition to this, the wrapped objects support
The below example shows how to connect signals in Python:
# define a signal handler function def someFunction(flag): print flag # button1 is a QPushButton that has been added to Python via addObject() # connect the clicked signal to a python function: button1.connect("clicked(bool)", someFunction)
You can create dedicated wrapper QObjects for any C++ class. This is done by deriving from PythonQtCppWrapperFactory and adding your factory via addWrapperFactory(). Whenever PythonQt encounters a CPP pointer (e.g. on a slot or signal) and it does not known it as a QObject derived class, it will create a generic CPP wrapper. So even unknown C++ objects can be passed through Python. If the wrapper factory supports the CPP class, a QObject wrapper will be created for each instance that enters Python. An alternative to a complete wrapper via the wrapper factory are decorators, see Decorator slots
For each known C++ class, PythonQt provides a Python class. These classes are visible inside of the "PythonQt" python module or in subpackages if a package is given when the class is registered.
A Meta class supports:
From within Python, you can import the module "PythonQt" to access these classes and the Qt namespace.
from PythonQt import QtCore # namespace access: print QtCore.Qt.AlignLeft # constructors a = QtCore.QSize(12,13) b = QtCore.QFont() # static method QtCore.QDate.currentDate() # enum value QtCore.QFont.UltraCondensed
PythonQt introduces a new generic approach to extend any wrapped QObject or CPP object with
The idea behind decorators is that we wanted to make it as easy as possible to extend wrapped objects. Since we already have an implementation for invoking any Qt Slot from Python, it looked promising to use this approach for the extension of wrapped objects as well. This avoids that the PythonQt user needs to care about how Python arguments are mapped from/to Qt when he wants to create static methods, constructors and additional member functions.
The basic idea about decorators is to create a QObject derived class that implements slots which take one of the above roles (e.g. constructor, destructor etc.) via a naming convention. These slots are then assigned to other classes via the naming convention.
The below example shows all kinds of decorators in action:
// an example CPP object class YourCPPObject { public: YourCPPObject(int arg1, float arg2) { a = arg1; b = arg2; } float doSomething(int arg1) { return arg1*a*b; }; private: int a; float b; }; // an example decorator class ExampleDecorator : public QObject { Q_OBJECT public slots: // add a constructor to QSize that takes a QPoint QSize* new_QSize(const QPoint& p) { return new QSize(p.x(), p.y()); } // add a constructor for QPushButton that takes a text and a parent widget QPushButton* new_QPushButton(const QString& text, QWidget* parent=NULL) { return new QPushButton(text, parent); } // add a constructor for a CPP object YourCPPObject* new_YourCPPObject(int arg1, float arg2) { return new YourCPPObject(arg1, arg2); } // add a destructor for a CPP object void delete_YourCPPObject(YourCPPObject* obj) { delete obj; } // add a static method to QWidget QWidget* static_QWidget_mouseGrabber() { return QWidget::mouseGrabber(); } // add an additional slot to QWidget (make move() callable, which is not declared as a slot in QWidget) void move(QWidget* w, const QPoint& p) { w->move(p); } // add an additional slot to QWidget, overloading the above move method void move(QWidget* w, int x, int y) { w->move(x,y); } // add a method to your own CPP object int doSomething(YourCPPObject* obj, int arg1) { return obj->doSomething(arg1); } }; ... PythonQt::self()->addDecorators(new ExampleDecorator()); PythonQt::self()->registerCPPClass("YourCPPObject");
After you have registered an instance of the above ExampleDecorator, you can do the following from Python (all these calls are mapped to the above decorator slots):
from PythonQt import QtCore, QtGui, YourCPPObject # call our new constructor of QSize size = QtCore.QSize(QPoint(1,2)); # call our new QPushButton constructor button = QtGui.QPushButton("sometext"); # call the move slot (overload1) button.move(QPoint(0,0)) # call the move slot (overload2) button.move(0,0) # call the static method grabber = QtGui.QWidget.mouseWrapper(); # create a CPP object via constructor yourCpp = YourCPPObject(1,11.5) # call the wrapped method on CPP object print yourCpp.doSomething(1); # destructor will be called: yourCpp = None