
DUI Theming for Dumm1es
Authors: Tuomas Kuosmanen <tuomas.kuosmanen@nokia.com>

In Brief

Maemo “Harmattan” is built on top of the “Direct Ui” framework, and it uses a somewhat
different approach to theming compared maemo5 and other earlier, gtk-toolkit based
maemo releases.

The system provides a set of common building blocks for applications, called common
components (programmers often call them “widgets” as well). Those common components
are themed uniformly throughout the system, so all applications can share the same look
and feel with no additional effort.

Applications can also create custom styling for certain elements when needed. This
application-specific theming is explained in more detail later in this document.

Basic theming technology

The theme is composed of “theme bits” (graphic elements in SVG, PNG or JPG format, sound
and vibra feedback files and possible other assets) and CSS stylesheets.

The CSS files tie our theme bits to component interaction states. For example, a piece of SVG
called “duibutton-background-pressed” is used as “skin” to a component called “duibutton”
when the user presses it. At the same time, a sound file called “blip.wav” is played and the
vibrator makes a small bump effect. The CSS files also define common style parameters for
components: margins, paddings, colors and fonts etc.

The SVG file format bears a loose resemblance to the W3C stylesheet standard, but it is both
exending it and also only implements a subset of the syntax1 It however tries to follow some
web stylesheet conventions, hoping to be familiar to designers with a web design
background. Therefore it is advisable to use the CSS files in the “base” theme as a reference,
as those should reflect the supported parameters.

SVG files

Each SVG element is referenced by its svg group-id. Therefore it is possible to organize the
graphics in a way that makes sense in the project – currently everything is split into
individual files based on the component they belong to. There can be any number of SVG
files in the theme, so you can either combine everything into one large canvas if you want,
or in separate files – either way works.

Element sizes and stretch margins

SVG files are rendered as bitmaps in the graphics memory, and stretched to the desired
sizes by using “border values”. Basically the graphical element is split into 9 pieces by
defining left, right, top and bottom border sizes, explained best with the following graphic:

1 See Libdui documentation > Styling > Stylesheet syntax reference & Examples

mailto:tuomas.kuosmanen@nokia.com

At least I learn best by example, so here goes:

DuiButtonStyle {
...
background-image: "duibutton-background" 10px 10px 10px 10px;
preferred-size: 20mm 10mm;
...

}

In DUI everything is sized based on millimeters as units, so we can have a truly consistent
physical size for UI elements regardless of pixel density of the actual screen. Since we work
with pixels on screen thouhg, we define the border values as pixels, which is the native unit
of SVG files. Therefore it is important to draw the svg graphics as “pixel perfect” as possible,
even though they are vector graphics.

When the above button background image is stretched over the button, the following
happens: The image is split into nine pieces, along those black lines. Now, lets say we have a
screen with 254 pixels per inch – to make calculations easy – so the preferred size of our
button would be 200x100 pixels. This is our “canvas” where the stretching happens. We take
our 9 pieces and first stick the corners to each corner of the 200x100 pixel area. Each corner
is 10x10 pixels in size. We then take the center piece of our graphic and stretch it so that it
just touches the inner corners of the square bits: our centerpiece is scaled to 180x80 pixels
size, and we have a X-shaped group of pixels. Finally the “sides” are stretched along those

arrows – top and bottom sides are stretched to 180x10 and left and right sides to 10x80 to
fill up the whole rectangle.

With this scheme it is possible to retain nicely rounded corners without distortion, but of
course it causes its own limits. However, when constructed carefully, one can do pretty nice
graphics. If the border values are kept as small as the radius of the round corners allows,
the scaling can work quite well even with smooth gradients across the whole graphic.

Adobe Illustrator

Illustrator SVG export can be used to create DUI theme elements – simply draw your
elements, combine each component state graphic into a group and name them in the layer
dialog – the group name is saved as the group ID when exporting to SVG. I have had reports
that Illustrator svg export has sometimes problems when using underscores in group names
(for example duibutton_background_pressed) – this is why we are currently using dashes in
the default duitheme (duibutton-background-pressed). However, if you have trouble with
your graphics not showing up, please check your exported SVG for garbled id's, or use
Inkscape. Latest versions of Illustrator seem to have much improved SVG export.

Inkscape (www.inkscape.org)

Inkscape is a free vector illustration program for Linux, Windows and Mac that can
also be used to create DUI theme elements, thanks to its excellent svg support.
On Inkscape, you also group elements together. However, there is a separate
Object Properties dialog for setting a group ID, which is accessible through the
Object menu. Set your ID there for each graphical element you intend to reference
later.

Bitmap images

Bitmap images are referenced by their filename with the extension .svg or .png stripped off
– for example mybackgroundimage.png can be referenced as “mybackgroundimage”. If you
have several files using the same basename, with different extension
(“meego.jpg”, “meego.jpeg” and “meego.png” and svg group called “meego”)
bad things may happen, so better keep them unique by their basename. Also, as
it is possible to have the same SVG group id in two separate files, it is important
to stick to a naming scheme that avoids this. Duitheme is currently using
duiwidgetname-[additional_identifier]-part-state naming convention.

Other things

To make it easier to maintain a consistent look and feel, themes define various “constants”
like commonly used fonts and a colors in a file called “constants.ini”. These can be used in
stylesheets to keep things consistent across the theme. This way you can later tweak those
settings in one file, rather than having to edit all your stylesheets if you want to change
something.

Themes can also contain vibra and sound feedbacks assigned to widget events, these can
consist of a sound file (wav) or a vibra motor effect file, or both. FIXME: these need to be
explained in more detail.

Theme folder structure

The system can have multiple themes and they are all located in /usr/share/themes/-path.
Each theme has one root direcory, which will contain all necessary files for the theme. So if
you are developing a theme, you should start by creating a new directory under
/usr/share/themes.

System theme directory/ (/usr/share/themes)
 └ theme_x/ (directory for theme-specific files)
 ├ index.theme (theme description file)
 └ dui/ (directory for dui-specific theming files)
 ├ constants.ini (theme specific constants)
 ├ feedbacks/ (directory for common feedbacks)
 ├ images/ (directory for common pixmaps)
 ├ svg/ (directory for common svg files)
 ├ icons/ (directory for common icons)
 ├ lib_y/(directory for library-specific theme files)
 │ ├ lib_y.conf (library-specific view configuration file)
 │ └ style/ (library-specific stylesheets)
 │ └ lib_y.css (entry point stylesheet file for library)
 ├ app_z/ (directory for application-specific theme files)
 │ ├ app_z.conf (application-specific view configuration file)
 │ ├ feedbacks/ (directory for application-specific feedbacks)
 │ ├ images/ (directory for application-specific pixmaps)
 │ ├ svg/ (directory for application-specific svg files)
 │ ├ icons/ (directory for application-specific icons)
 │ └ style/ (application-specific stylesheets)
 │ └ app_z.css (entry point stylesheet for application)
 └ locale/(directory for different locales)
 └ en/ (directory for locale-specific theme files)
 ├ constants.ini (locale specific constants)
 └ icons/ (locale specific icons)

The common user interface components theme is in the subfolder “libdui”, and application
specific theming is in a subfolder named after the application name. Otherwise the structure
is the same on either case, and the subfolders are always as follows:

• feedbacks folder is used to define different vibra/sound event feedbacks. These can
be bound into widget states and events through CSS. Sound files are wav format.
FIXME: Needs more information about how this works.

• icons has all the icon files, one svg file per icon. Even though icons are SVG, the
filename is used as an identifier for icons, and svg group id does not matter.

• images contains bitmap images, for example wallpaper files and application
background graphics. Referenced by basename, (filename without the extension).
Take care to keep the id's unique and separate from svg id's since they are read into
the same namespace!

• style contains the stylesheets for theme, and there is one “master stylesheet” that is
loaded, and other stylesheet can be included with the @import command. The
master stylesheet name is the same as the parent folder name: libdui.css or
myapplicationname.css, depending on whether it is part of common components or
application specific theming. By using the import command you can split the CSS into
logical parts, for example grouped by component.

http://af01.research.nokia.com/docs/libdui/theme_structure.html#locale_icons
http://af01.research.nokia.com/docs/libdui/theme_structure.html#locale_constants
http://af01.research.nokia.com/docs/libdui/theme_structure.html#locale_l
http://af01.research.nokia.com/docs/libdui/theme_structure.html#locale
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application_css
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application_style
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application_graphics
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application_graphics
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application_graphics
http://af01.research.nokia.com/docs/libdui/theme_structure.html#feedbacks
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application_conf
http://af01.research.nokia.com/docs/libdui/theme_structure.html#application
http://af01.research.nokia.com/docs/libdui/theme_structure.html#library_css
http://af01.research.nokia.com/docs/libdui/theme_structure.html#library_style
http://af01.research.nokia.com/docs/libdui/theme_structure.html#library_conf
http://af01.research.nokia.com/docs/libdui/theme_structure.html#library
http://af01.research.nokia.com/docs/libdui/theme_structure.html#theme_graphics
http://af01.research.nokia.com/docs/libdui/theme_structure.html#theme_graphics
http://af01.research.nokia.com/docs/libdui/theme_structure.html#theme_graphics
http://af01.research.nokia.com/docs/libdui/theme_structure.html#feedbacks
http://af01.research.nokia.com/docs/libdui/theme_structure.html#theme_constants
http://af01.research.nokia.com/docs/libdui/theme_structure.html#theme_description
http://af01.research.nokia.com/docs/libdui/theme_structure.html#theme

• svg contains all of our SVG graphics. You can split the graphics across separate files if
you like, or you can just have one huge SVG that contains all your graphics, it's up to
you. The only important thing is that you need to make sure each referenced svg
group ID is unique – so be careful with naming if you have separate files.

• index.theme file that defines the name of the theme etc.. See base/index.theme for
more. FIXME: explain better!

• FIXME: needs information about the other files like .conf and constants.ini etc...

index.theme

The file “index.theme” describes the theme itself, contains information about theme
inheritance etc. This file is common with for example gtk-toolkit themes, and follows the
“windows .ini file” syntax with section names with brackets and basic key-value pairs. An
example is below:

[Desktop Entry]
Type=X-DUI-Metatheme
Name=Very cool Theme
Encoding=UTF-8

[X-DUI-Metatheme]
X-Inherits=base
X-Icon = icon-theme-logo
X-Visible=true

Type for dui themes is naturally always X-DUI-Metatheme, and Name is the theme display
name that should be shown to the user. X-Inherits is the important bit here – it defines
which theme to inherit from. Commonly this should be “base”, but if you want to base your
theme on some other theme, it is also possible to do that. X-Visible is used to hide the
“base” theme from users, as it is not a complete theme by itself.

Theme Constants File (constants.ini)

This file contains constant definitions for this theme. The constant set is predefined and can
be found from /usr/share/themes/base/constants.ini. Constants are used like in application
code and in stylesheets to set common fonts and colors to be used in many places, so they
can be defined in a central location.

You can use the constants like this in your CSS files:

DuiButtonStyle {
 font: $FONT_DEFAULT;

 background-image: "duibutton-background" 10px 10px 10px 10px;
 background-color: $COLOR_BACKGROUND;
 text-color: $COLOR_FOREGROUND;
 ...

}

Below is an example of constants.ini which changes the default colors for this theme.

[Palette]

COLOR_FOREGROUND = #fafafa ;text color
COLOR_SECONDARY_FOREGROUND = #7a7a7a ;secondary text

COLOR_BACKGROUND = #ff0000 ;background

;reversed elements
COLOR_INVERTED_FOREGROUND = #090909 ;text color

COLOR_INVERTED_SECONDARY_FOREGROUND = #595959 ;secondary text
COLOR_INVERTED_BACKGROUND = #00ffff ;background

Creating your own theme

Finally the part you are looking for! :-) Probably the simplest way is to learn by example, so
create a folder into /usr/share/themes/mytheme and copy the index.theme from “devel”
theme there. Make sure X-Inherits=base exists, and try out Widgetsgallery's theme switcher
in the main view's menu. Naturally your theme does not really look any different yet (and it
has no icon) but it works.

Now take some assets from base and copy them into your own theme into the identical
folder tree there, and modify them.

Whatever your theme is missing is used from the “base” theme, so you can change the
theme step by step, and still have a working theme you can test.

Technical bits and troubleshooting

The important part is that since SVG elements are referenced by their group-ID, you need to
keep those id's in sync with your CSS files – so if you draw new elements next to the old
ones, be sure to rename the new one after deleting the old, or just work inside the “group”
to begin with. If you are using Adobe Illustrator, the group ID is the same as the layer
dialog's group name. In Inkscape you should set the ID from the Object Properties dialog
(Object Properties in the menu). On both applications doubleclicking the group “dives”→
into the group, so you can edit and replace elements, while keeping the group name intact.
This is just a thing to remember, especially when you wonder why your new shiny graphic is
not showing up... :-)

Installing a theme

(explain packaging here)

	DUI Theming for Dumm1es
	In Brief
	Basic theming technology
	SVG files
	Element sizes and stretch margins
	Adobe Illustrator
	Inkscape (www.inkscape.org)

	Bitmap images
	Other things
	Theme folder structure
	index.theme

	Theme Constants File (constants.ini)

	Creating your own theme
	Technical bits and troubleshooting

	Installing a theme

